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Many papers have been devoted to the problem of the interaction of
beams of charged particles with a plasma (a detailed bibliography is
given, for example, in [1]). Analysis of the dispersion equation shows
that in the case of a sufficiently slow monoenergetic electron beam of
low density, growing longitudinal waves are not excited in a system
consisting of such a beam and a plasma [2-4).

The problem of the penetration of an external longitudinal electric
field into a semiconfined plasma with an electron beam in the absence
of instabilities in the system is studied (the boundary-value problem
for growing waves was examined in [5]). This problem is, in a certain
sense, an extension of the second part of L. D, Landau's well-known
work [6] to include the case of a plasma with a beam. On the other
hand, in the absence of an external electric field, this problem may
be considered a boundary-value problem of the interaction of a weakly
modulated electron beam with a plasma.

1. Derivation of the integral equation. Let a plasma
be confined by a plane wall that is an ideal reflector of
particles incident on it, and let an electron beam with
charge density p, and velocity v, relative to the plasma
be propagated perpendicular to this plane into the in-
terior of the plasma. It is assumed that there is no
thermal velocity spread in the beam. Let the x axis
lie along the wall in the direction of propagation of
the beam and let u be the velocity component along
this axis.

The distribution function f(u, X) must have the prop-
erty f(u, 0) =f(—u, 0) at the boundary; in this case we
shall use a distribution function integrated with respect
to Vy' and Vz.

The strength of the longitudinal electric field E4 and
the perturbations of the density py and velocity vy of
the beam are also specified at the boundary.

If the deviations from equilibrium are small, then
the plasma oscillations of the system are described
by linear equations [3]
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Here f is the deviation of the distribution function
from a Maxwellian distribution function f; p the de-
viation of the charge density of the beam from the
equilibrium value p;, which is assumed to be compen-
sated by an excess positive charge in the plasma; and
v is the deviation of the beam velocity from the equi-
librium value v,. The dependence of all the quantities
upon time is taken in the form exp (—iwt).
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System of equations (1.1) can be reduced to an inte-
gral equation in E(x). Accordingly, formal integration
of each equation of the system should be carried out
beforehand.

Thus, from the last two equations of (1.1) we find
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The relation linking f and E, which follows from
the first equation of (1.1), is not included here; it co-
incides with the expression in L, D, Landau's article
[6] and is necessary only for deriving the integral equa-
tion. Finally, integration of the second equation of
(1.1) gives
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The following relation [from the first equation of
(1. 1)] was used here:
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Thus, we arrive at the following integral equation:
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Note that the function K({) was investigated by L. D.
Landau [6].

2. Integral representatlon of the solution. Let us
put the integral equation in a form that is more con-
venient for solution. For example, the field E(x) is
conveniently represented as the sum of two terms

E (2) = Ew + E°(2), 2.1)



2 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

It is not difficult to show that the field strength when
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where w_ and w4 are the Langmuir frequencies of the
plasma without the beam and of the electron beam, re-
spectively, and € is the dielectric constant of the plas-
ma without the beam, Let us formally extend the defi-
nitions of functions K(£) and L{£) and the unknown func-
tion E°(x) into the domain of negative values of the in-
dependent variable:

=K@, L(—§ =L@,
E°(— 2) = — E° (=),

K(—-Y 2.3

Then the integral equation for E°(x) can be written
as

B ()~ § Kla—8) E° Q) de - { Lz —B) B (§)d& =

=+ (£, (2.4)

2(@) = v (®) — B + Ex{IL(€) + 2K €)1 5. (2.5)

Here the upper signs are for x > 0 and lower signs
are for x <0,
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Fig. 1

Let us solve integral Eq. (2.4) by the Fourier
method. If we multiply both sides of the equation by
exp(—ikx) and integrate with respect to X from — to
+o00, we obtain

E°(k)[1 —K (k)] — Ex’Lx + Ex°Lx = gx—g_x. (2.6)

Here, for any value of ¢(x), the symbols ¢(k) and
@k are defined by the equations

¢ (k) = §o et g
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(2.7)
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It is easy to see that if @(x) is an even function,
then its'Fourier component ¢ (k) = @i + @_k; but if -
@(x) is odd, then ¢(k) = ¢k — @_k.

Assuming that it is odd we represent Eq 2.6) a

B —Ly—K (k)] —E- [t — Ly — K (k)] =

= Bk 8-k, (2. 8)

In order to solve Eq. (2.8), we must establish a re-
lationship between the functions of the independent var-
iable -k and the complex-conjugate functions of the
independent variable k, which is possible if the real
and imaginary parts in E°(x), g(x), L(x), and K(x) are
separated and the transforms correspondingtothenare
examined separately. Then (2. 8) is reduced to a sys-
tem of two equations, which connect the imaginary
parts of certain analytic functions of k. The real parts
of these analytic functions can differ only by constants.
By analyzing the behavior of the functions when |k| —
-~ o, however, it is easy to show that the constants
are equal to zero. As a result, we obtain
L S
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E° (k) =
Thus, the electric field is represented as
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3. Distribution of electric field and of small pertur-
bations of beam velocity and density. Following [2, 6],
let us introduce the functions K, (k) and K,(k), which
are given by the relations

Kiby= (%) 17, @ —11, X
3.1)

Ky(k) = (=] e @) — 1,
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Here 9 is the temperature in energy units; m the
electron mass; and the contour Cy is shown in the fig-
ure. '

The function J_(B8) differs from J+(8) in that in inte-
gration the pole is circumvented not from below but
from above. Therefore,

J_B)=J.@)+iV2nBexp(—/: ) (3.3)

It is easy to see that K(k) = Ky(k) when k > 0 and
K(k) = K,(k) when k < 0. Similarly, let us introduce
the function (k) = Kk — K_k, and also the functions
Iy (k) and 1I,(k), which are given by the following for-
mulas;
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Here Ei(z) is an integral exponential function.
It can be shown that TI(k) = IIj(k) when k > 0 and
M k) = M,(k) when k < 0. C :
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Taking (3. 1) and (3. 4) into account, from formula
(2. 10) we obtain
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Integrals (3. 5) can be completely calculated only
numerically, but it is not difficult to obtain an asymp-
totic formula that gives the law of variation of the field
E(x) at values of x that are great in comparison with
the Debye radius a of the plasma without the beam,
Using a calculation method completely analogous to
that used in [6], we obtain the expression

E(z) = mi1~rv -"/“(i)zexp[ 3<r ]
xexp (i S E A D) (o= (o))

Expression (3.7) gives a law of decrease of the dif-
ference E(x) — Eo that is similar to that in {6]. This
was to be expected, since there is no thermal velocity
spread in the beam. If E, + 4nij, / o vanishes, then the
field E(x) will approach zero exponentially as x — =,
which follows from an evaluation of the integrals by
determination of the residues.

If we know the law of distribution of the electric
field in the plasma, then from (1.2) and (1. 3) we can
find the distribution of the perturbations of beam ve-
locity and density. Let us convert these expressions
to a form that is more convenient for deriving asymp-
totic formulas:

(3.7)
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For example, perturbation of the beam velocity at
high values of x is connected with the electric field
E(x) by the simple relation

v(z) = —ﬁ—f(z) (3.9)

muyy

4, Investigation of resonance. Let us find the roots
of the denominators of the integrands in (3. 5); the dis-
persion equation 1—L,—K, (k)=0 for longitudinal oscil-
lations [2] can be represented as

1 — (2 = g0 () —1]

3 (v=%). 4.1

The poles with small Im k make a substantial con-
tribution to integral (3.6). We shall therefore seek the
roots of Eq. (4.1) that lie close to the essential singu-
larity k = 0 in the upper half-plane k, Assuming that
[B] > 1, expanding 1/B — v) in powers of v/8, and us-
ing the asymptotic form of the function J_(8) in the up-
per half-plane [2], we finally obtain

1_ — Qv+ VAWM 13(Q 210 2)e (4.2)
3 3(Q_T1Q,2v2) :

The roots of the equation 1 — L_i — Ky(k) = 0 are
determined by the same formula (4, 2), in which, how-
ever, v changes sign. One of the roots (4.2) lies in
the upper half-plane only when the radicand is nega-
tive, i.e.,

Q.
< 3@itom (4.3)
Let us find the roots of the equation 1 — Ly —
— Kj(k) = 0, which also lie in the upper half- plane k.
This expression has the form
30, \2
=)

B

= Q2 [/, () —11- (4. 4)
The asymptotic form of J4(8) in the upper half-
plane (which corresponds to the lower half-plane )
has an exponentially small imaginary term [2].
Let us represent the desired root of Eq.. (4. 4) as

B =B (1 +Bi/Bo)

where B is the real part of the root, which is deter-
mined from (4.2), ignoring the exponentially small
term, and 34 is a small imaginary component. Then

(4. 5)

Bi_ _ iQ2 VimBfexp(—2%30 | (4. 6)
B0 3Q_2 -4 Q. 2y (3v + 3g)

From the statement of the problem, it follows that
Q4 < Q_ and v < 1, Let us represent the dielectric
constant & as € = g, + Ae, where

1y2
£ = — e (1)

As we shall see below, the value of £, will be criti-
cal, since when & > ¢, the law of variation of the field
near the boundary is qualitatively different as compared
with the case € < g,. In [6], the critical value was g, =
= 0, The shift of the critical value of &, into the domain
of negative values of € in the case in question is ex-
plained by the Doppler frequency reduction for a mov-
ing beam, Consider the cases Ag > 0 and Ae < 0. When
Ag >0

11—+ VIR T+ 00 Ae

Bo = * 3(Q_Z+Q+2vn)+ . (4. 8)
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so that when v > 0 and Ae > —¢g,, B; > 0 also, and there
then exists a root of Eq. (4.4) with ImB3; < 0. When

v < 0, there is always at least one such root of Eq.

(4. 4). Let Ae < 0, Then in the lower half-plane g there
is always a root of Eq. (4.1)

4 =L VIO O Re] |

B 3(Q 2+ 0.5

Taking into account relations (4.2)—(4.9) and limit-
ing the expansion in powers of k to linear terms, we

find that when Ae < 0 the electric field near the bound-

ary varies according to the law

(4.9)

E— %{1—2__mvm9-“+ Qv

Q 2v

(4. 10)
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In order to shorten formula (4, 10), we let vy = 0
and ji =90.

Similarly, we obtain the behavior of the field near
the boundary when &g > 0

=B &Y J ¢ C
E=3 {1 T o5 OXP [ Tar Q.4 Y3 Vede

- CEE RN

Q.2

Formula (4. 11) is also obtained assuming vy = 0
and j; = 0. -

The necessity of taking into account the residue at
the pole in evaluating the integral from zero to infinity,
which leads to expression (4.11), is explained by the
fact that, in finding the asymptotic form of this inte-
gral by the method of descent, the original contour of
integration must be deformed so that if coincides with
the level line that passes through the saddle point. In
this case, the pole is circumvented in the right half of
the upper half-plane, if it is situated below the level
line and above the axis of abscissas.

In formula (4. 11), Ac must be assumed to be small,

but in this case Yy must be great, so that the field slow-
ly attenuates with increase in x, Otherwise, this term
can be ignored, and the field can be determined from
(3.7).

In the absence of a beam, Eqs, (4.10) and (4. 11),
which describe the resonance case, are inapplicable.
But if the quadratic terms are taken into account in
the expansion in powers of k, then passage to the lim-
iting case of absence of a beam gives the relations ob-
tained in [6].

At x= 0, formulas (4. 10) and (4. 11) do not give the
correct boundary value of Ey, since terms of the order
of |Ae| were ignored in the calculations. With in-
crease in X, however, in both cases the field oscil-
lates about the value E;/e, which it approaches at in-
finity.
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